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A. Pagès, J. Gondzio and N. Nabona

Abstract: The long-term planning of electricity generation in a liberalised market using the Bloom
and Gallant model can be posed as a quadratic programming (QP) problem with an exponential
number of linear inequality constraints called load-matching constraints (LMCs) and several other
linear non-LMCs. Direct solution methods are inefficient at handling such problems and a heuristic
procedure has been devised to generate only those LMCs that are likely to be active at the optimiser.
The problem is then solved as a finite succession of QP problems with an increasing, though still
limited, number of LMCs, which can be solved efficiently using a direct method, as would be the case
with an QP interior-point algorithm. Warm starting between successive QP solutions helps then in
reducing the number of iterations necessary to reach the optimiser.

The warm start technique employed herein is an extension of J. Gondzio and A. Grothey’s approach
to quadratic programming problems. In this report, we propose how to initialise new variables in
the problem to which a warm start technique is applied.

This report shows that warm starting requires on average 50% fewer iterations than a cold start
in the test cases solved. The reduction in computation time is negligible, however.
Keywords: Warmstarting, quadratic programming, long-term power generation planning, interior
point method.

1 Introduction

The long-term planning of electricity generation in a liberalised market [11] using the Bloom and
Gallant formulation [4] can be posed as a quadratic programming (QP) problem with an exponential
number of linear inequality constraints called load-matching constraints (LMCs) and several other
linear non-LMCs. Direct solution methods are inefficient at handling such problems and a heuristic
procedure has been devised [14] to generate only those LMCs that are likely to be active at the
optimiser. The problem is then solved as a finite succession of QP problems with an increasing, though
still limited, number of LMCs, which can be solved efficiently using a direct method, as would be the
case with an QP interior-point algorithm. Warmstarting between successive QP solutions helps to
reduce the number of iterations required to reach the optimiser. The warm start technique for interior
point methods used herein is an extension of the one presented by J. Gondzio and A. Grothey [7].

Long-term energy generation planning is an issue of key importance to the operation of generation
companies. It is used to budget for and plan fuel acquisitions and to provide a framework for short-
term energy generation planning.

A long-term planning period (e.g. one year) is subdivided into shorter intervals, for which para-
meters are known or predicted. The variables to be optimised are the expected energy productions
of each generating unit in each interval. In long-term planning, it is the production of each unit in
the whole interval that is of relevance, rather than the generation rate per hour.

In each interval, the balance of the load must be satisfied, in addition to several other technical
or economical constraints (e.g. maximum hydro generation, limits on emissions and market share
constraints). A Load Duration Curve (LDC) is a practical means for representing the load of a future
interval.

Bloom and Gallant [4] proposed a linear model to find the optimal method for matching the LDC
of a single interval and subject to any other linear operational constraints. This model can easily be
extended to the multi-interval case.

1Partially supported by Project DPI2002-03330 of Ministerio de Educación y Ciencia, Spain
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When a long-term power planning problem needs to be solved for a generation company operating
in a liberalised market, the company will not have a load of its own to satisfy, but will rather bid the
energy produced by its units to a market operator, which selects the lowest-priced energy to match
the load from amongst the units of bidding companies. In this case, the scope of the problem is no
longer that of the generation units of a single generation company, but that of all the units of all
companies bidding in the same competitive market, which match the load of the whole system. The
goal of a company participating in a liberalised market is to maximise its profit, which is understood
as the revenue for its generation at market price minus the generation costs. Using a linear function
of the market price the resulting objective function is quadratic on the expected energies.

Bloom and Gallant [4] proposed an active set methodology in which a small subset of LMCs is
considered and updated at each iteration. Computational experience [13] shows that such an approach
is slow to converge. Pérez-Ruiz and Conejo [15] proposed using a Dantzig-Wolfe decomposition.
This approach makes it unnecessary to formulate the LMCs explicitly by generating vertices of
the polyhedron defined by the load-matching and non-negativity constraints. However, solution
accuracy is hard to achieve [12].

Pagès and Nabona [14] proposed a heuristic that tries to guess the active LMCs at the optimiser
using a limited number of LMCs. This heuristic solves a sequence of problems (as many as the
number of units, at most) in which some new LMCs are included at each stage. The solution is found
using interior point methods. The problems only differ in the fact that new LMCs are added, which
makes the use of warm-start techniques a good strategy for obtaining the new solution more quickly.

There are many papers on warmstarting for interior point methods, mainly for linear program-
ming. Gondzio [6] applies warm-start techniques to a cutting plane scheme where new columns are
appended. Yildirim and Wright [17] give two different approaches with the theoretical worst-case
analysis, where the size of the problem does not change. Gondzio and Grothey [7] describe a new
version of the warm start for linear programming and problems of constant size. This report extends
the Gondzio and Grothey approach to the quadratic case and to the infeasible algorithm. The main
difference between the linear and the quadratic case is that in the latter primal variables directly
contribute to dual feasibility.

Benson and Shanno [2] introduce a warmstarting procedure for linear programming. The problem
is modified by introducing new positive variables whose negative values relax the nonnegativity of
the original primal and dual variables. These new positive values are added to the primal and dual
objective functions through ℓ1 penalty terms. The warm-start initial point is the optimal solution of
the unperturbed problem. The structure of the reduced KKT system is similar to that of the original
problem, but it neither requires factorization refinement nor produces very short steps at the initial
iterations. The same authors [3] have extended their warmstarting technique to nonlinear program-
ming problems. Both in linear and in nonlinear cases, a logarithmic barrier of the relaxed variables
plus their corresponding new variables is employed to develop the first order optimality conditions.
Forsgren [5] develops a theoretical warm start for non-linear programming which distinguishes be-
tween “almost active” and “almost non-active” constraints at the optimal point. For warmstarting, it
is assumed that the active set does not change for the new solution. The slacks of the “almost active”
constraints and the dual variables of the rest are eliminated from the Newton system.

In most of the papers, new instances do not change size. In our case new constraints (LMCs)
appended from one iteration to the next. We propose a strategy for initialising the new variables and
for computing a direction to quickly recover primal and dual feasibility.

Section 2 is a brief description of the long-term electric power generation planning model. Section 3
outlines the main steps in the heuristic, and describes the nature of the cuts added. Section 4 considers
the warm-start technique from a general point of view and section 5 features the computational results
of using warm starts and the heuristic method to solve the long-term power generation planning
problem.
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2 Problem formulation

This section is devoted to the long-term generation planning problem. The whole period considered
is split into ni intervals, because some parameters are not constant throughout the period or some
constraints refer to brief lapses.

The most important part of the formulation is modelling the matching of the load for each interval.
The load of a future interval is forecast using a Load Duration Curve (LDC) whose shape limits the
generation of certain units. Given that the problem is set in a liberalised market framework, the only
LDC that can be predicted is the system load. This makes it necessary to include a representation of
all the units in the pool. As Bloom and Gallant proposed [4], the matching of the load is formulated
by an exponential number of inequality constraints.

The long-term generation planning problem is formulated as a linearly constrained model with a
quadratic objective function. A detailed explanation of the model can be found in [12].

2.1 Load Duration Curve

The LDC is the most natural technique for representing the load of a future interval. For a past
interval, for which the hourly load record is available, the LDC is equivalent to the load-over-time
curve sorted in order of decreasing power. It should be noted that in a predicted LDC, random events
such as weather or shifts in consumption timing, which cause modifications of different signs in the
load, tend to cancel out and, that the LDC maintains the power variability of the load in its entirety.

For a future interval, the base load p, the peak load p̂, the interval energy, ê, and the shape of the

LDC must be predicted.

2.2 Thermal Units

The relevant parameters of a thermal unit j are the power capacity c j (the maximum power output
in MW that the unit can generate), the outage probability q j (the probability of the unit not being
available when it is required for generating power) and a linear generation cost v j (the production
cost in e/MWh). Let Ω be the set of units and nu the number of units.

2.3 Matching of the Load

Let e j be the expected generation of unit j. The expected generation of each unit depends on the
loading order used to dispatch the generation in order to match the LDC.

Let ψ be a subset of units. The load survival function, Sψ(x), after the units in ψ have been loaded,
satisfies:

Sψ(x) = S∅(x)
∏

m∈ψ

qm +
∑

χ⊆ψ

(
S∅(x +

∑

j∈χ

c j)
∏

j∈χ

(1 − q j)
∏

j∈ψ\χ

q j

)

where χ represents any subset of ψ. When ψ = ∅, S∅(x) corresponds to the LDC rescaled and rotated.
The load survival function, Sψ(x), is computed from S∅(x) through convolution, as Balériaux et al [1]
proposed.

The expected generation e j, of unit j for a particular interval of length t and loaded after all units
in ψ, is

e j = t(1 − q j)

∫ c j

0

Sψ(x)dx.
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2.4 Bloom and Gallant’s model for matching the LDC

Bloom and Gallant [4] established that, in order for the expected energies e j, j ∈ Ω, to match the LDC,
the linear inequality constraints ∑

j∈ψ

e j ≤ ê − w(ψ) (1)

must be satisfied for all subsets ψ of Ω. The expected unsupplied energy, w(ψ), when the units in ψ
have been loaded, is:

w(ψ) = t

∫ p̂

0

Sψ(x) dx

Given that there are 2nu − 1 subsets of Ω = {1, 2, . . . ,nu}, we have an exponential number of linear
inequality constraints. For 20 units, there are over one million LMCs.

These constraints ensure that any possible ordering of the units is feasible although only one of
them will be optimal.

2.5 Non load-matching constraints

The objective of long-term planning is to determine the optimal loading order of the units and the
corresponding values of the expected generations e j at each interval (and thus match the LDC) and
other operational constraints. Matching the LDC is expressed by an exponential number of LMCs.
There are other constraints that must be satisfied in terms of the expected energies, e js, such as the
limited availability of fuels or emission limits over one or several intervals. These constraints are
termed non-load-matching constraints (non-LMCs) and are modelled through linear equations.

2.6 Profit maximisation

In liberalised markets, generation companies bid their generation to a market operator and a market
price is determined every hour by matching the demand with the lowest-priced bids. Generation
companies are interested in obtaining a maximum profit, which is given by the difference between
the revenue at market price and the generation cost of any bids accepted. In long-term operation, all
the bids accepted over a time interval (a week or a month) must match the LDC of the interval.

An estimated linear market-price function with respect to load duration is calculated for each
interval: bi+ lit (t being the interval duration and bi and li < 0 the parameters to be estimated). Taking
into account the estimated duration of the expected energy generated by unit j in interval i, ei

j
/c j, the

profit (i.e. the revenue at market price minus cost) will be

∫ ei
j
/c j

0

c j

{
bi + lit − v j

}
dt =

(
bi − v j

)
ei

j +
li

2c j
ei

j
2 .

If we add up all the intervals and units, we obtain the profit function to be maximised, which is
quadratic on the generated energies. A detailed explanation can be found in [11].
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2.7 Long-term electric power generation planning

The Bloom and Gallant quadratic profit-maximisation formulation extended to ni intervals is ex-
pressed as:

maximize
ei

j

ni∑

i

nu∑

j

{(
bi − v j

)
ei

j +
li

2c j
ei

j
2
}

(2)

subject to:
∑

j∈ψ

ei
j ≤ êi − wi(ψ) ∀ψ ⊂ Ω i = 1, . . . ,ni (3)

ni∑

i

Ci ei ≥ d (4)

ei
j ≥ 0 j = 1, . . . ,nu i = 1, . . . ,ni (5)

where ni is the number of intervals, nu the number of units, bi and li are the basic and linear coefficients
of the long-term market price function of the ith interval; Ci ∈ Rn≥×nu is the matrix of non-LMC referred
to interval i and d ∈ Rn≥ the corresponding right hand side vector of non-LMC inequalities.

The number of variables is equal to ni · nu and there are ni · (2
nu − 1) LMCs. A more detailed

development of the model can be found in [11].

3 Solution method

Several approaches to solving the long-term electric power planning problem using the Bloom and
Gallant formulation have been considered. A direct (QP or IPQP) approach is of no use due to the
exponential number of LMCs. The problem does not only arise from storage requirements but also
from the complexity of computing the corresponding right-hand sides of (3), which is very time-
consuming. These computations require numerical integration and convolutions of the load survival
function. Moreover, only a few of the LMCs (at most ni × nu out of ni × (2nu − 1)) are active at the
optimiser.

In this section we outline the main ideas behind the heuristic introduced in [14]. The heuristic is
an iterative process in which a succession of similar problems must be solved. This section is presents
the problems that need to be solved and the cuts generated at each stage.

3.1 Outline of the heuristic

The heuristic exploits the fact that any feasible solution must correspond to a loading order of the
units (to match an LDC, which can be different for each interval). The translation of a loading order
into load-matching constraints is a set of nu constraints nested in keeping with the loading order.

Let us recall the expression of a load-matching constraint (1):

∑

j∈ψ

e j ≤ ê − w(ψ).

A set ψ of units determines a unique LMC. The body of the constraint has a 1 for each unit in ψ
and the right-hand side depends on ψ. It is said that the constraint formed by the set ζ is nested by
the constraint defined by θ if ζ ⊂ θ.

The following is an example in which the constraint defined by ζ is nested by the one defined by
θ for a case with nu = 6 units:
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u1 u2 u3 u4 u5 u6

ζ = {u2,u4} . 1 . 1 . .
θ = {u1,u2,u4,u5,u6} 1 1 . 1 1 1

In general, a set of LMCs is nested if it is possible to sort each constraint of the set in such a way that
each constraint is nested in the next. Similarly, the unit sequence of the loading order can be deduced
from the nested set of LMCs as the unit that differs between two consecutive constraints. Following
with the example, for a loading order {u2,u4,u1,u5,u6,u3} the corresponding LMC coefficients are:

loading order: u2 u4 u1 u5 u6 u3

LMC 1 . . . . .
1 1 . . . .
1 1 1 . . .
1 1 1 1 . .
1 1 1 1 1 .
1 1 1 1 1 1

For a point at which none of the non-LMCs are active, all the nu load-matching constraints
corresponding to a certain ordering will be active. Otherwise, only a subset of LMCs will be active,
although it is guaranteed that this subset will be nested [10].

The procedure characterised below refers to a single interval but applied to all intervals simulta-
neously. Given that the LMCs refer to a single interval, the loading order may be different in each
interval. The heuristic has three main stages.

• Initialization stage:

Solve the problem with the non-LMCs, the variable upper bound and only the all-one LMC (of
each interval):

∑
j∈Ω e j ≤ ê − w(Ω). The all-one LMC always nests any other constraint.

u1 u2 u3 u4 u5 u6

list of LMCs 1 1 1 1 1 1

• Self-ordering stage:

From the previous solution, the subset of units that generate at their maximum capacity, φ,
is chosen. Then, all LMCs that are composed exclusively of units in φ are added to the new
problem.

The incorporation of these constraints means that the new solution will have the best ordering
for the units in φ, thus ensuring that any other ordering with these units in the highest position
will be feasible. Computational experience shows that 10 units at most are at the upper bound,
|φ| ≤ 10, and (210 − 1)ni is still an acceptable number of LMCs. For example, for a solution
in which the units at the upper bound were φ = {u1,u2,u4}, the new problem would have the
following LMCs:

u1 u2 u3 u4 u5 u6

list of LMCs 1 1 . . . .
1 . . 1 . .
. 1 . 1 . .
1 1 . 1 . .
1 1 1 1 1 1

6



• Iterative stage:

The third stage consists in solving a sequence of problems in which only one new LMC (per
interval) is added at each iteration. This new constraint nests the former ones and has one unit
of difference with respect to the last LMC considered.

For example, u5 could be the next unit in the loading order and constraint

u1 u2 u3 u4 u5 u6

new LMC 1 1 . 1 1 .

which nests constraint {u1,u2,u4} would be added to the list of LMCs considered.

The heuristic requires that a range of similar problems be solved. It employs a reduced subset
of LMCs and is moderately enlarged in successive steps until the optimal active set and solution are
found. The use of direct methods is therefore appropriate. We solved the problems using interior
point methods. Warm start techniques reduce the number of iterations needed to find the successive
solutions.

4 Warm Start applied to Interior Point Methods

4.1 Interior Point Steps

Within a general framework, consider the quadratic problem

minimize hTx + 1
2 xTHx

subject to Bx ≤ d
x ≥ 0

(6)

Any of the problems defined in the heuristic described in section 3.1 are covered by such a
formulation. The first-order optimality conditions of (6) are

Bx + f = d
−BTu −Hx + z = h

Xz = 0
Fu = 0

. (7)

The first set of equations ensures primal feasibility, the second dual feasibility and the last two
complementarity. We use the upper-case letters X and F to denote the diagonal matrices formed by
vectors x and f respectively.

A primal-dual interior point method relaxes the complementarity with the parameter µ and finds
an approximate solution of the perturbed first-order optimality conditions

Bx + f = d
−BTu −Hx + z = h

Xz = µe
Fu = µe

. (8)

The first-order optimality conditions of (6) when the logarithmic barrier of parameter µ is applied
to the non-negativity of the variables are the same as (8). Parameter µ is thus commonly known as
the barrier parameter. At each iteration of an interior-point method, the parameter µ is reduced.
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The approximate solution of (8) is found by applying one iteration of the Newton method. The
system to be solved at each iteration is




−H I −BT

B I
Z X

U F







∆x
∆ f
∆z
∆u



=




h + BTu +Hx − z
d − Bx − f
µe − Xz
µe − Fu



. (9)

A primal step-length αP and a dual step-length αD are chosen to ensure that all components of the
new iterate are positive.

The central path is the sequence of points (x, f , z,u) that depend on µ and that satisfy (8), with
(x, f , z,u) > 0. It is proved that if the interior of the primal and dual feasible region is non-empty the
central path is unique [16].

4.2 Warm Start Framework

The technique known as warmstarting takes advantage of some prior knowledge of the problem (for
example, by drawing on a solution to a similar problem) to produce an initial point that should lead
to better performance than by starting the algorithm from scratch.

Suppose problem (6) is solved. From its solution, and according to the heuristic, new constraints

B̃x ≤ d̃ (10)

are generated. The new problem to be solved is

minimize hTx + 1
2 xTHx

subject to Bx ≤ d

B̃x ≤ d̃
x ≥ 0

(11)

Our goal is to find the new optimiser of (11) as fast as possible using information collected from
the previous solution to (6).

The equation system to be solved for the new problem is:

Bx + f = d

B̃x + f̃ = d̃

−BTu − B̃Tũ −Hx + z = h
Xz = µe
Fu = µe

F̃ũ = µe

(12)

where B̃ is the matrix of coefficients for the new constraints and d̃ its right hand side. f̃ are the slack

variables of the new constraints and ũ their dual variables. Again, F̃ is a diagonal matrix formed by

vector f̃ .
The differences between the old problem (see equations (8)) and the new one (12) as regards the

modified first order optimality conditions are:

• Regarding the variables, the afore-mentioned new primal slacks, f̃ , and the corresponding dual
variables, ũ, of the new constraints.

• Regarding the constraints, the new primal constraints, B̃x + f̃ = d̃, a new term, B̃Tũ, in the dual

constraints, and the complementarity condition for the new variables, F̃ũ = µe.
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4.3 Restoring Primal and Dual Feasibilities

Although in practice any positive value can be employed as an initial point, the theory of the path-
following algorithms requires that the iterates stay in a neighbourhood of the central path. However,
since this neighbourhood is rather extensive, the iterates should simply stay away from the boundary.

As an illustration, we have solved the exact points in the central path for several values of µ of a
small problem. We have re-solved the problem with one new constraint. In figure 1, both central paths
are plotted. The extra constraint and the new central path are represented by the dotted lines. The
small problem, with x ∈ R2, has a quadratic objective function, with h = [−34; −68] and H = [3 2; 2 12].

There is one constraint: B = [0 − 1], d = [−5]. The new constraint has coefficients B̃ = [−1 − 1] and
d̃ = [−8].

Figure 1(a) shows the central paths for the primal variables (the slack variables f are implicit).
An ∗ mark highlights the points with µ equal to 103, 102, 10, 1 and 0.1. Figure 1(b) displays the dual
variables in terms of µ.

In this example, the additional constraint does not cut across the the central path but it shrinks the
feasible area. Then, if the feasible area changes, the central path moves. By means of this example,
we wish to illustrate that even if the starting point remains feasible for the new problem, some special
steps must be always taken.

Primal variables
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Dual variables

0 500 1000
0

10

20

30

40

50

z
1

µ
0 500 1000

0

20

40

60

z
2

µ

0 500 1000
0

20

40

60

80

u
1

µ
0 500 1000

0

10

20

30

u~
2
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(b)

Figure 1: Change in the central path when a new constraint is introduced (dotted line)

Several procedures can be implemented to recover the feasibilities. A first approach is to recover
primal and dual feasibility independently. This is a reasonable approach for linear programming
where primal variables do not directly contribute to the dual infeasibility. In quadratic optimisation,
primal and dual feasibilities are related because of the term Hx, which appears in the dual feasibility
constraint.

Bearing in mind that the inclusion of a new constraint, even a feasible one, changes the central
path, that is to say, the primal and dual variable values, our goal is to start the usual algorithm with
a feasible and well-centered point.

4.4 Initial Point

• Old variables

As initial values for the old variables (x, f , z and u) we choose the first iterate from the previous
solution which has primal and dual relative infeasibilities below a given threshold ǫc (eg ǫc =

9



0.001) and also a small relative gap. However, the complementarity products in this point are
still large, µ > 0. Once the usual algorithm attains such a point one or two recentering steps
are carried out in order to have all complementarity products within the interval [γµ, µ/γ] (eg
γ = 0.1). The stored point is known as the µ-point.

The advantage of using a point close to optimality for warmstarting, instead of the optimal one,
is that there is more room to change from the neighborhood of the former central path to that
of the new one. The centering steps are a safeguard to avoid storing a point with elements that
may be too close to the boundary. A start from such a point could easily get trapped.

• Barrier parameter

No improvement to the complementarity condition is required, so we maintain the µ of the
stored µ-point (old variables).

• New variables

The only requirement in interior point methods is that the iterates have to be strictly positive.
This gives a wide range of options for the initialisation of the new variables, so we try to avoid
degrading the first optimality conditions (12).

Because new primal constraints have been added (10), the magnitude of the primal infeasibility
is beyond our control.

Given that an iterate that satisfies the modified first order optimality conditions (8) is chosen for

the old variables, the dual infeasibility is B̃Tũ. If small positive values are chosen for the new
dual variables, ũ, then dual feasibility is not significantly altered. In this case, centrality is lost or
primal infeasibility is artificially increased. This approach flies in the face of the common-sense
assumption that some of the new constraints will become active and will have a large dual
variable.

As our objective is to reach the neighbourhood of the new central path, we assign a value to the

new variables which maintains the complementarity products, f̃ jũ j, equal to µ. Our proposal
is:

f̃ j =

{
d̃ j − B̃ jx if d̃ j − B̃ jx > ǫ
max(µ/mean(u), ǫ) otherwise

ũ j = µ/ f̃ j

(13)

If the constraint is sufficiently feasible at the stored µ-point, we maintain this information.
Otherwise, we take the value for the dual variable to be the arithmetic mean of the old dual
variables u. It has been observed that some components of u perform badly. They have large
values compared with the rest. We excluded the outliers from the computation of the mean.
These are the components such that: u j > mean(u) + 2 · stdev(u), where mean(u) is computed
with all the components and stdev(u) is the square root of the variance.

Parameter ǫ (eg ǫ = 100) is a safeguard against small values of µ. This precaution is linked to
the way the search direction is computed. Given that B is of different size at each iteration of
the heuristic and B′B is block diagonal, we factorise the normal equations form of the Newton
system. This form gives a system of the same size at each iteration of the heuristic and still has
a good sparsity pattern. The normal equations form is the system that results after pivoting on

the slack variables ∆z, ∆ f and ∆ f̃ and on the dual variables ∆u and ∆ũ, which is

[
−H − X−1Z − B′F−1UB − B̃F̃−1ŨB̃

]
. (14)
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The choice of a small f̃ j value worsens the condition of the matrix (14). Consequently, it is

advisable to have the ratio ũ j/ f̃ j under control. In view of the way we choose f̃ j values, the

diagonal components ũ j/ f̃ j are safely bounded: ũ j/ f̃ j = µ/ f̃ 2
j
≤ µ/ǫ2. This is a satisfactory upper

bound for an ǫ > 1.

4.5 Recovering step

Primal and dual feasibility may be violated at the proposed initial point, but the complementarity
products are uniform. From this point, the usual interior point algorithm would try to reduce the
infeasibilities and would also attempt to approach optimality by reducing the barrier parameter µ.
However, as this initial point was built artificially, we propose to retain the parameter µ for some
iterations and concentrate on reducing primal and dual infeasibilities. The system requiring solution
is




−H I −BT −B̃−T

B I

B̃ I
Z X

U F

Ũ F̃







∆x
∆ f

∆ f̃
∆z
∆u
∆ũ




=




h + BTu + B̃Tũ +Hx − z
d − Bx − f

d̃ − B̃x − f̃
µe − Xz
µe − Fu

µe − F̃ũ




. (15)

This system is equivalent to the one that would be solved by the usual infeasible interior point
method applied to (12) except that in this case no improvement to complementarity condition is
required.

4.6 Weighted Newton Step

It is unrealistic to assume that a full step in the direction obtained from (15) will be performed, for
the reason that variables must remain positive. It may occur that only a very small step is allowed,
because of poor scaling of either the data of the problem or the variable values, and then the amount
of infeasibility absorbed is very small. When this occurs, our proposal is to perturb the direction and
apply multiple centrality correctors [8] in order to provide a better chance for improvement in primal
and/or dual feasibilities.

Rather than solving (15) in one go, we split the right-hand side into three parts:




τD

0
0


 ,




0
τP

0


 ,




0
0
τµ


 (16)

where

τD =
[

h + BTu + B̃Tũ +Hx − z
]

τP =

[
d − Bx − f

d̃ − B̃x − f̃

]
τµ =




µe − Xz
µe − Fu

µe − F̃ũ


 (17)

and solve the system for each of part (using the same factorisation). We obtain the directions ∆D, ∆P

and ∆µ. Note that ∆P only attempts to recover primal feasibility: it leaves the dual infeasibility and
the complementarity unchanged. Analogously, ∆D recovers dual feasibility only, while ∆µ does not
alter the infeasibilities at all and concentrates on driving the complementarity products close to the
barrier parameter µ.
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An estimate of the amount of infeasibility to be absorbed can be computed from these directions. If
any of the estimates are not satisfactory we propose to scale the direction and apply multiple-centrality
correctors. Scaling a direction with a factor β (β < 1) is equivalent to reducing the infeasibilities by
this factor. The advantage of solving the system in three steps is that β can be chosen after solving
the system.

4.6.1 Estimates of the infeasibility to be absorbed

In linear programming, the reduction rate of the infeasibilities is 1 minus the step size, which may be
different for the primal and the dual direction. If step αP is performed on the primal direction, then
primal infeasibility is reduced (1 − αP) times. Analogously, if the step αD is carried out, then dual
infeasibility is reduced (1 − αD) times.

In quadratic programming, the same results apply if primal and dual step lengths are the same.
However, the usual practice is to choose different step sizes for the primal and dual directions, αP

and αD. Primal infeasibility remains bounded by the primal step length, but the dual infeasibility
reduction rate cannot be bounded. Given the initial point, the infeasible constraints are the new
ones, giving a dual infeasibility τh. On moving along the direction computed from (15), the dual
infeasibility is:

−B′(u + αD∆u) − B̃(ũ + αD∆ũ) −H(x + αP∆x) + (z + αD∆z) = h + τh

and using the feasibility of the current point gives,

αD(−B′∆u − B̃∆ũ + ∆z) − αPH∆x = −τh,

where the dual step depends on the value of H∆x, which can be positive or negative.
Extending the linear case to the quadratic case, but only to compute the estimates of the infeasibility

to be absorbed, we propose:

• As estimates of the primal infeasibility to be absorbed, αP
P
, which is the maximum step length

with the primal variables along ∆P.

• As estimates of the dual infeasibility to be absorbed, αD
D

, which is the maximum step length
with the dual variables along ∆D.

Direction ∆µ could be omitted if we only intended to recover feasibility. Moreover, if the initial
point is well centred τµ will be nearly 0 in all its components, at least in the first iteration.

4.6.2 Final direction

When an estimate, either αP
P

or αD
D

, is very small, this is a sign that some components of this direction
are not satisfactory. We hope that by using a weighted direction plus some multiple centrality
correctors, the total reduction in primal and dual infeasibilities will be larger.

Given that the final direction will be a composition of the three directions, we try a more ambitious
target, weighting each direction according to:

βP = min(καP
P
, 1) βD = min(καD

D
, 1) βµ = 1 or 0 (18)

with κ > 1. On the basis of previous computational experience we propose κ = 2, but there may be
other cases in which a larger κ is more suitable.

The final composite direction ∆ is:

∆ = βP∆P + βD∆D + βµ∆µ

to which some centrality correctors are applied.

12



4.7 Outline of a warm-start iteration

The warm start in interior point methods, as opposed to the cold start, produces an initial point using
some prior knowledge of the problem (or a similar one), with the idea of making the usual algorithm
perform better. Therefore, when considering a warm start for the following problem, we must store
a near-optimal and well-centered µ-point.

From the optimal solution, new cuts are appended to the problem. The new variables, both
primal and dual, are initialized as in (13). From this point the warm-start procedure is carried out
and produces the initial point.

i Compute the primal and dual infeasibilities, τP and τD, and the centrality deviations,
τµ

ii Compute the directions needed to recover primal and dual feasibility and centrality,
solving system (15) with right-hand sides (17): ∆P, ∆D, ∆µ

iii Compute the usual Newton direction: ∆ = ∆p + ∆d + ∆µ and the maximum primal
and dual step lengths αP and αD. If αP > ǫs and αD > ǫs then go to (vii).

iv Compute the maximum step length and the estimates of the infeasibility to be ab-
sorbed:

∆P → αP
P
, αD

P
∆D → αP

D
, αD

D

v Compute the direction weights:

βP = min(καP
P
, 1)

βD = min(καD
D
, 1)

βµ = 1

vi Compute the predictor composite direction:

∆ = βP∆P + βD∆D + βµ∆µ

vii Apply Gondzio multiple centrality correctors to ∆.

viii Compute the step lengths on ∆ and update the point.

ix Compute primal and dual infeasibilities, τP and τD.

x If ‖τP‖ > ǫw or ‖τD‖ > ǫw and there has been a significant reduction of the infeasibilities,
repeat from (i)

Otherwise switch to the usual interior point method.

5 Computational Results

The warm-start approach presented was tested for the solution of the long-term generation planning
using the heuristic. These problems are realistic test cases from the Spanish liberalised power pool.
Some of the units represent a single unit while some others merge a group of similar units. The data
of the test cases is available from http://www-eio.upc.es/˜gnom.
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5.1 Implementation issues

The code used was implemented in C programming language. The warm-start procedure is an
extension of the infeasible primal-dual interior point method [16]. The interior point algorithm
applies the Mehrotra predictor-corrector direction [9] with Gondzio multiple-centrality correctors [8].
The usual algorithm was slightly modified in order to store the µ-point: when the algorithm attains
a point which is a good candidate for the warm-start procedure, this point is recentered and stored
for later use in the warm-start function if a new problem has to be solved.

The warm-start procedure allows the user to choose some parameters. The values that gave the
best results when we were solving the instances were:

• ǫc = 0.001: if relative primal and dual infeasibility and the gap are smaller than ǫc then perform
some centering steps and store the µ-point.

• κ = 2: scaling directions parameter.

• βµ = 1: the centering direction usually helps.

• ǫs = 0.1: if the Newton step does not make enough progress (αP < ǫs or αD < ǫs) then compute
the weighted Newton step.

• ǫw = 1e−4: if relative primal and dual infeasibility are less than ǫw the warm start procedure
stops.

5.1.1 Problem description

Table 1 shows the basic statistics of each problem: number of units, nu, number of intervals, ni, and
number of non-LMCs, n≥. Thus, the number of variables is ni × nu. The total number of LMCs that
the complete model has is ni · (2

nu − 1). Note the reduced subset of LMCs employed by the heuristic
shown in the column consid. nlmc, of which active nlmc are active at the solution point. The number of
LMCs generated (see column active up.bo.) is highly related to the number of units generating at their
maximum capacity (see the second stage of the heuristic).

5.1.2 Heuristic statistics

The number of problems re-solved during the solution of each case with the heuristic is reported in
table 2. The first problem generated by the heuristic is solved from a cold start and the following ones
are fed with an initial warm-start point, derived from the previous solution.

In each iteration of the heuristic a number of LMCs are added to the problem. We reoptimise
when one or more of the LMCs generated are infeasible, but the new problem contains all previously
generated constraints. In table 2, the new LMCs column shows the average number of new LMCs
appended to each problem being reoptimized. The adjacent columns show the average number of
infeasible LMCs at the optimal point, inf ∗, and at the stored µ-point, inf µ. The average is calculated
with respect to the number of problems solved using a warm start, shown in the column num prb
re-solved.

Table 3 details the relative infeasibility at each iteration of the heuristic where the new problem
is re-solved. The 0 value indicates that the norm of the infeasibility is smaller than 10−6. There is a
significant difference between iteration 2 and the following ones (see section 3.1), because the iterative
step-by-step stage of the heuristic starts at iteration 3.

14



non-LMCs LMCs

active active consid.
case nu ni n≤ nlmc up.bo. nlmc

ltp 01 13 11 9 24 59 171
ltp 02 15 11 43 48 22 117
ltp 03 17 11 66 46 23 137
ltp 04 18 11 77 51 24 147
ltp 05 45 11 40 34 108 2293
ltp 06 63 11 222 176 82 2484
ltp 07 18 52 321 130 69 703
ltp 08 25 27 190 85 76 411
ltp 09 52 15 90 27 32 622
ltp 10 29 8 61 39 9 213
ltp 11 33 13 34 23 12 317
ltp 12 67 15 329 243 74 794
ltp 13 56 52 32 88 218 2386
ltp 14 13 27 25 39 127 138
ltp 15 14 27 24 40 40 169
ltp 16 12 27 25 33 15 182
ltp 17 16 27 24 40 37 241
ltp 18 18 27 17 77 42 318
ltp 19 19 27 25 80 112 354

Table 1: Characteristics of the test cases solved and active constraints at the solution point

5.2 Warm-start results

The results in table 4 show time (in seconds) and the number of iterations obtained by solving the
long-term power planning instances with the heuristic. The way the interior-point solver begins is
compared here: using a cold start or a warm start. The first problem solved (of the heuristic described
in section 4) is always initialized with a cold start (all the variable values are 106).

The column headed prb ws shows the number of problems where the warm start procedure was
applied, and therefore these are the compared solutions. The adjacent column shows the results
obtained using the cold start solution: time and average number of iterations done by the interior-
point solver. The warm start results are detailed next: solution time, the average number of warm
start iterations (ws), the average number of iterations required to find the new solution using the
usual interior-point method (ipm), and the sum of both columns (total), giving the total number of
iterations. The total number of iterations is comparable, in terms of computational effort, to the
number of iterations done with a cold start.

The last part of table 4 shows the variations in computation time and in the number of iterations
between the solutions obtained using a cold or warm start. The bottom row shows the average for
the test cases computed. On average, 15 iterations are required to solve each subproblem if we start
from an arbitrary point (cold start) and 7 iterations if we use information from the previous solution
(warm start). On average, the warm-start routine performs 1 iteration (and 6 the usual interior-point
algorithm). The average saving on interior point iterations is around 50%.

Seeing as the difference in time in most of the instances is a matter of fractions of a second (see
table 4) and that the timing function is inexact (the time given is computed with the Linux time
command, adding up user and system time), the difference in time is imperceptible. We further
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num prb LMCs
re-solved new inf * inf µ

ltp 01 4 40.5 26.5 3.3
ltp 02 7 15.0 6.3 2.0
ltp 03 9 13.9 4.8 3.1
ltp 04 10 13.5 4.7 3.1
ltp 05 1 1983.0 1983.0 1697.0
ltp 06 1 1983.0 1983.0 1099.0
ltp 07 6 108.5 12.5 2.0
ltp 08 6 62.5 4.7 0.0
ltp 09 5 106.0 1.2 0.0
ltp 10 7 28.3 2.7 0.1
ltp 11 3 90.7 1.0 0.0
ltp 12 0 0.0 0.0 0.0
ltp 13 2 1127.5 1.0 0.0
ltp 14 2 48.0 3.0 2.5
ltp 15 4 31.5 1.5 1.0
ltp 16 1 91.0 1.0 1.0
ltp 17 9 21.6 1.2 0.4
ltp 18 12 23.9 4.0 3.5
ltp 19 9 31.7 3.2 0.1

Table 2: Number of problems re-solved starting from a warm-start point, and average number of
added LMCs and infeasible LMCs at the optimizer and at the stored µ-point.

analyzed how much of the time is employed by the routines that solve the problems (including the
warm start routine when applicable) using the -pg option of the gcc compiler and the gprof profiler
2. The profile shows that the percentage of time employed by the solver function and the warm start
routine (where applicable) in 17 of the 19 cases represents less than 30% of the total time (for the cold
start solution). This percentage is closely linked to the factorization of the Newton system routine.
From the rest of the time, most of it is given over to the computation of the LMC right-hand sides.

Another conclusion that can be drawn from the analysis of the results is that the number of warm-
start iterations not only depends on the magnitude of the primal and dual infeasibility, but also on
the quality of the stored µ-point: the larger µ is, the better.

5.2.1 Importance of the µ-point

The analysis of the results presented in table 4 reveals that warmstarting in interior point methods
is effective, although there is still room for improvements. Table 5 shows the average number of
iterations saved by carrying out the warm-start procedure instead of simply making a straightforward
start from the stored µ-point. It is worth noting that in some cases, rather than carrying out a previous
step, it is better to quite simply feed the usual algorithm with the stored µ-point as the initial point.
These results support the idea that taking care of the stored µ-point is also a key issue.

The small advantage presented by the warm-start procedure in the test cases solved may be a
consequence of the shallowness of the appended cuts (LMCs). When problems arise with deeper
cuts, the warm-start technique should present an advantage.

2I wish to thank Andreas Grothey for his guidance on this issue
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‖max(0, d̃ j − B̃x∗/d̃ j)‖2
ite 2 ite 3 ite 4 ite 5 ite 6 ite 7 ite 8 ite 9 ite 10 ite 11 ite 12

ltp 01 4.1e-03 1.5e-05 4.9e-05 6.8e-05
ltp 02 1.4e-03 4.1e-05 6.5e-05 5.5e-05 4.7e-05 2.9e-05 6.3e-05
ltp 03 1.4e-03 6.0e-06 5.0e-06 3.1e-05 5.4e-05 4.5e-05 3.8e-05 2.3e-05 5.4e-05
ltp 04 1.4e-03 6.0e-06 6.0e-06 3.1e-05 5.4e-05 6.2e-05 4.1e-05 3.4e-05 2.1e-05 5.1e-05
ltp 05 1.7e-02
ltp 06 1.7e-02
ltp 07 2.0e-06 8.0e-06 8.0e-06 5.4e-05 6.3e-05 1.2e-04
ltp 08 8.0e-03 0 0 0 0 0
ltp 09 1.0e-06 1.0e-06 0 0 0
ltp 10 1.2e-02 3.8e-03 3.0e-06 1.0e-06 0 0 0
ltp 11 3.0e-06 0 0
ltp 12
ltp 13 0 0
ltp 14 2.9e-05 2.3e-04
ltp 15 3.5e-05 1.6e-04 3.9e-05 3.4e-05
ltp 16 1.3e-02
ltp 17 7.4e-05 1.0e-05 3.5e-05 3.4e-05 4.2e-05 3.4e-05 3.6e-05 1.8e-05 2.9e-05
ltp 18 9.9e-03 1.2e-02 4.6e-05 6.0e-06 4.0e-06 7.2e-05 1.4e-04 3.9e-05 2.8e-05 1.3e-05 4.0e-06
ltp 19 0 0 0 0 0 0 0 0 0
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prb Cold start Warm start Difference
ws time ite time ws ipm total time ite

ltp 01 4 1.00 15.5 0.80 1.5 8.3 9.8 0.20 5.75
ltp 02 7 0.70 15.1 0.62 1.9 5.7 7.6 0.08 7.57
ltp 03 9 0.74 14.0 0.71 1.1 7.1 8.2 0.03 5.78
ltp 04 10 0.81 14.3 0.77 1.1 6.7 7.8 0.04 6.50
ltp 05 1 2.66 18.0 2.59 1.0 11.0 12.0 0.07 6.00
ltp 06 1 4.03 21.0 3.94 1.0 12.0 13.0 0.09 8.00
ltp 07 6 4.17 13.8 2.72 1.7 5.3 7.0 1.45 6.83
ltp 08 6 2.14 16.2 1.38 0.5 5.0 5.5 0.76 10.67
ltp 09 6 2.91 17.8 2.20 0.8 4.8 5.6 0.71 12.23
ltp 10 7 0.77 15.1 0.68 1.1 4.0 5.1 0.08 10.00
ltp 11 6 1.19 15.7 1.12 0.0 4.7 4.7 0.07 11.00
ltp 12 0 3.49 - 3.47 - - - - -
ltp 13 1 6.74 14.0 6.54 0.0 4.0 4.0 0.20 10.00
ltp 14 2 0.48 15.5 0.50 0.5 6.5 7.0 -0.02 8.50
ltp 15 4 0.57 14.5 0.70 1.5 4.0 5.5 -0.14 9.00
ltp 16 1 0.50 12.0 0.48 2.0 4.0 6.0 0.01 6.00
ltp 17 9 0.75 14.1 0.63 0.8 4.8 5.6 0.12 8.55
ltp 18 12 1.08 13.9 0.99 1.3 7.4 8.7 0.08 5.25
ltp 19 9 1.76 16.1 1.20 0.7 5.1 5.8 0.55 10.33

avg 1.92 15.4 1.69 1.0 6.1 7.2 0.24 8.22

Table 4: Time and average number of iterations done with a cold start or with a warm start

complementarity products close to µ. When the steps along the usual Newton direction are
small, the Newton system is solved in three steps, giving a direction to recover primal feasibility,
another to recover dual feasibility and the third one is to recover the centrality. We try to reduce
the amount of infeasibility using a weighted Newton direction. The weights are based on
estimates of the primal and dual infeasibility reduction.

• We have also proposed a way to initialise the new variables. It maintains the same µ for the
new point.

• On average, the weighted Newton warm start consistently produces 53 % savings in the number
of iterations with respect to the cold start, and in CPU time the savings are on average of 12%
(leaving out the calculations of right-hand sides).

• Initialising the new variables in the way put forward and then continuing with normal interior-
point iterations is also advantageous with respect to cold start, because on average the savings
in iterations are of 46% and the savings in CPU time are of 7% (leaving out the calculations of
right-hand sides).

• As regards CPU time, it must be borne in mind that on average a 90% of it when using cold
starts is devoted to the calculation of the right-hand sides of the newly created constraints.
The gains in CPU time obtained through warm-start techniques in this long-term generation
planning problem refer only to the remainder of the time. Therefore, the gains in CPU time are
more important than those referred previously.
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Cold start Warm start µ-point
time ite time ite time ite

ltp 01 1.00 15.5 0.80 9.8 0.96 9.0
ltp 02 0.70 15.1 0.62 7.6 0.66 8.9
ltp 03 0.74 14.0 0.71 8.2 0.66 7.9
ltp 04 0.81 14.3 0.77 7.8 0.76 8.3
ltp 05 2.66 18.0 2.59 12.0 2.66 11.0
ltp 06 4.03 21.0 3.94 13.0 3.78 12.0
ltp 07 4.17 13.8 2.72 7.0 3.81 12.3
ltp 08 2.14 16.2 1.38 5.5 2.10 10.4
ltp 09 2.91 17.8 2.20 5.6 2.16 6.0
ltp 10 0.77 15.1 0.68 5.1 0.57 6.5
ltp 11 1.19 15.7 1.12 4.7 0.94 4.7
ltp 12 3.49 - 3.47 - 3.44 -
ltp 13 6.74 14.0 6.54 4.0 6.55 4.0
ltp 14 0.48 15.5 0.50 7.0 0.49 6.5
ltp 15 0.57 14.5 0.70 5.5 0.66 6.3
ltp 16 0.50 12.0 0.48 6.0 0.56 6.0
ltp 17 0.75 14.1 0.63 5.6 0.61 5.3
ltp 18 1.08 13.9 0.99 8.7 0.90 10.8
ltp 19 1.76 16.1 1.20 5.8 1.55 13.6

avg 1.92 15.4 1.69 7.2 1.78 8.3

Table 5: Comparison of several initializing procedures
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